3.1.51 \(\int (a+a \sec (c+d x))^3 \sin ^2(c+d x) \, dx\) [51]

Optimal. Leaf size=98 \[ -\frac {5 a^3 x}{2}+\frac {5 a^3 \tanh ^{-1}(\sin (c+d x))}{2 d}-\frac {3 a^3 \sin (c+d x)}{d}-\frac {a^3 \cos (c+d x) \sin (c+d x)}{2 d}+\frac {3 a^3 \tan (c+d x)}{d}+\frac {a^3 \sec (c+d x) \tan (c+d x)}{2 d} \]

[Out]

-5/2*a^3*x+5/2*a^3*arctanh(sin(d*x+c))/d-3*a^3*sin(d*x+c)/d-1/2*a^3*cos(d*x+c)*sin(d*x+c)/d+3*a^3*tan(d*x+c)/d
+1/2*a^3*sec(d*x+c)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]
time = 0.14, antiderivative size = 98, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {3957, 2951, 2717, 2715, 8, 3855, 3852, 3853} \begin {gather*} -\frac {3 a^3 \sin (c+d x)}{d}+\frac {3 a^3 \tan (c+d x)}{d}+\frac {5 a^3 \tanh ^{-1}(\sin (c+d x))}{2 d}-\frac {a^3 \sin (c+d x) \cos (c+d x)}{2 d}+\frac {a^3 \tan (c+d x) \sec (c+d x)}{2 d}-\frac {5 a^3 x}{2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^3*Sin[c + d*x]^2,x]

[Out]

(-5*a^3*x)/2 + (5*a^3*ArcTanh[Sin[c + d*x]])/(2*d) - (3*a^3*Sin[c + d*x])/d - (a^3*Cos[c + d*x]*Sin[c + d*x])/
(2*d) + (3*a^3*Tan[c + d*x])/d + (a^3*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2717

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 2951

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(
m_), x_Symbol] :> Dist[1/a^p, Int[ExpandTrig[(d*sin[e + f*x])^n*(a - b*sin[e + f*x])^(p/2)*(a + b*sin[e + f*x]
)^(m + p/2), x], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, n, p/2] && ((GtQ[m,
0] && GtQ[p, 0] && LtQ[-m - p, n, -1]) || (GtQ[m, 2] && LtQ[p, 0] && GtQ[m + p/2, 0]))

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3957

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[(g*Co
s[e + f*x])^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rubi steps

\begin {align*} \int (a+a \sec (c+d x))^3 \sin ^2(c+d x) \, dx &=-\int (-a-a \cos (c+d x))^3 \sec (c+d x) \tan ^2(c+d x) \, dx\\ &=-\frac {\int \left (2 a^5+3 a^5 \cos (c+d x)+a^5 \cos ^2(c+d x)-2 a^5 \sec (c+d x)-3 a^5 \sec ^2(c+d x)-a^5 \sec ^3(c+d x)\right ) \, dx}{a^2}\\ &=-2 a^3 x-a^3 \int \cos ^2(c+d x) \, dx+a^3 \int \sec ^3(c+d x) \, dx+\left (2 a^3\right ) \int \sec (c+d x) \, dx-\left (3 a^3\right ) \int \cos (c+d x) \, dx+\left (3 a^3\right ) \int \sec ^2(c+d x) \, dx\\ &=-2 a^3 x+\frac {2 a^3 \tanh ^{-1}(\sin (c+d x))}{d}-\frac {3 a^3 \sin (c+d x)}{d}-\frac {a^3 \cos (c+d x) \sin (c+d x)}{2 d}+\frac {a^3 \sec (c+d x) \tan (c+d x)}{2 d}-\frac {1}{2} a^3 \int 1 \, dx+\frac {1}{2} a^3 \int \sec (c+d x) \, dx-\frac {\left (3 a^3\right ) \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d}\\ &=-\frac {5 a^3 x}{2}+\frac {5 a^3 \tanh ^{-1}(\sin (c+d x))}{2 d}-\frac {3 a^3 \sin (c+d x)}{d}-\frac {a^3 \cos (c+d x) \sin (c+d x)}{2 d}+\frac {3 a^3 \tan (c+d x)}{d}+\frac {a^3 \sec (c+d x) \tan (c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(300\) vs. \(2(98)=196\).
time = 1.59, size = 300, normalized size = 3.06 \begin {gather*} \frac {1}{32} a^3 (1+\cos (c+d x))^3 \sec ^6\left (\frac {1}{2} (c+d x)\right ) \left (-10 x-\frac {10 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )}{d}+\frac {10 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )}{d}-\frac {12 \cos (d x) \sin (c)}{d}-\frac {\cos (2 d x) \sin (2 c)}{d}-\frac {12 \cos (c) \sin (d x)}{d}-\frac {\cos (2 c) \sin (2 d x)}{d}+\frac {1}{d \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+\frac {12 \sin \left (\frac {d x}{2}\right )}{d \left (\cos \left (\frac {c}{2}\right )-\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )}-\frac {1}{d \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+\frac {12 \sin \left (\frac {d x}{2}\right )}{d \left (\cos \left (\frac {c}{2}\right )+\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])^3*Sin[c + d*x]^2,x]

[Out]

(a^3*(1 + Cos[c + d*x])^3*Sec[(c + d*x)/2]^6*(-10*x - (10*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]])/d + (10*Lo
g[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]])/d - (12*Cos[d*x]*Sin[c])/d - (Cos[2*d*x]*Sin[2*c])/d - (12*Cos[c]*Sin[
d*x])/d - (Cos[2*c]*Sin[2*d*x])/d + 1/(d*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^2) + (12*Sin[(d*x)/2])/(d*(Cos[
c/2] - Sin[c/2])*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])) - 1/(d*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2) + (12*
Sin[(d*x)/2])/(d*(Cos[c/2] + Sin[c/2])*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))))/32

________________________________________________________________________________________

Maple [A]
time = 0.09, size = 126, normalized size = 1.29

method result size
derivativedivides \(\frac {a^{3} \left (\frac {\sin ^{3}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{2}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 a^{3} \left (\tan \left (d x +c \right )-d x -c \right )+3 a^{3} \left (-\sin \left (d x +c \right )+\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )\right )+a^{3} \left (-\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )}{d}\) \(126\)
default \(\frac {a^{3} \left (\frac {\sin ^{3}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{2}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 a^{3} \left (\tan \left (d x +c \right )-d x -c \right )+3 a^{3} \left (-\sin \left (d x +c \right )+\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )\right )+a^{3} \left (-\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )}{d}\) \(126\)
norman \(\frac {-\frac {5 a^{3} x}{2}+\frac {18 a^{3} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {10 a^{3} \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+5 a^{3} x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {5 a^{3} x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}-\frac {5 a^{3} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {5 a^{3} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(152\)
risch \(-\frac {5 a^{3} x}{2}+\frac {i a^{3} {\mathrm e}^{2 i \left (d x +c \right )}}{8 d}+\frac {3 i a^{3} {\mathrm e}^{i \left (d x +c \right )}}{2 d}-\frac {3 i a^{3} {\mathrm e}^{-i \left (d x +c \right )}}{2 d}-\frac {i a^{3} {\mathrm e}^{-2 i \left (d x +c \right )}}{8 d}-\frac {i a^{3} \left ({\mathrm e}^{3 i \left (d x +c \right )}-6 \,{\mathrm e}^{2 i \left (d x +c \right )}-{\mathrm e}^{i \left (d x +c \right )}-6\right )}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}-\frac {5 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}+\frac {5 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}\) \(177\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^3*sin(d*x+c)^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(a^3*(1/2*sin(d*x+c)^3/cos(d*x+c)^2+1/2*sin(d*x+c)-1/2*ln(sec(d*x+c)+tan(d*x+c)))+3*a^3*(tan(d*x+c)-d*x-c)
+3*a^3*(-sin(d*x+c)+ln(sec(d*x+c)+tan(d*x+c)))+a^3*(-1/2*cos(d*x+c)*sin(d*x+c)+1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [A]
time = 0.48, size = 127, normalized size = 1.30 \begin {gather*} \frac {{\left (2 \, d x + 2 \, c - \sin \left (2 \, d x + 2 \, c\right )\right )} a^{3} - 12 \, {\left (d x + c - \tan \left (d x + c\right )\right )} a^{3} - a^{3} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} + \log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 6 \, a^{3} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right ) - 2 \, \sin \left (d x + c\right )\right )}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^3*sin(d*x+c)^2,x, algorithm="maxima")

[Out]

1/4*((2*d*x + 2*c - sin(2*d*x + 2*c))*a^3 - 12*(d*x + c - tan(d*x + c))*a^3 - a^3*(2*sin(d*x + c)/(sin(d*x + c
)^2 - 1) + log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 6*a^3*(log(sin(d*x + c) + 1) - log(sin(d*x + c) -
1) - 2*sin(d*x + c)))/d

________________________________________________________________________________________

Fricas [A]
time = 3.87, size = 125, normalized size = 1.28 \begin {gather*} -\frac {10 \, a^{3} d x \cos \left (d x + c\right )^{2} - 5 \, a^{3} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) + 5 \, a^{3} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (a^{3} \cos \left (d x + c\right )^{3} + 6 \, a^{3} \cos \left (d x + c\right )^{2} - 6 \, a^{3} \cos \left (d x + c\right ) - a^{3}\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^3*sin(d*x+c)^2,x, algorithm="fricas")

[Out]

-1/4*(10*a^3*d*x*cos(d*x + c)^2 - 5*a^3*cos(d*x + c)^2*log(sin(d*x + c) + 1) + 5*a^3*cos(d*x + c)^2*log(-sin(d
*x + c) + 1) + 2*(a^3*cos(d*x + c)^3 + 6*a^3*cos(d*x + c)^2 - 6*a^3*cos(d*x + c) - a^3)*sin(d*x + c))/(d*cos(d
*x + c)^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} a^{3} \left (\int 3 \sin ^{2}{\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx + \int 3 \sin ^{2}{\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}\, dx + \int \sin ^{2}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int \sin ^{2}{\left (c + d x \right )}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**3*sin(d*x+c)**2,x)

[Out]

a**3*(Integral(3*sin(c + d*x)**2*sec(c + d*x), x) + Integral(3*sin(c + d*x)**2*sec(c + d*x)**2, x) + Integral(
sin(c + d*x)**2*sec(c + d*x)**3, x) + Integral(sin(c + d*x)**2, x))

________________________________________________________________________________________

Giac [A]
time = 0.55, size = 102, normalized size = 1.04 \begin {gather*} -\frac {5 \, {\left (d x + c\right )} a^{3} - 5 \, a^{3} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) + 5 \, a^{3} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + \frac {4 \, {\left (5 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 9 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3}\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 1\right )}^{2}}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^3*sin(d*x+c)^2,x, algorithm="giac")

[Out]

-1/2*(5*(d*x + c)*a^3 - 5*a^3*log(abs(tan(1/2*d*x + 1/2*c) + 1)) + 5*a^3*log(abs(tan(1/2*d*x + 1/2*c) - 1)) +
4*(5*a^3*tan(1/2*d*x + 1/2*c)^7 - 9*a^3*tan(1/2*d*x + 1/2*c)^3)/(tan(1/2*d*x + 1/2*c)^4 - 1)^2)/d

________________________________________________________________________________________

Mupad [B]
time = 1.28, size = 90, normalized size = 0.92 \begin {gather*} \frac {5\,a^3\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {5\,a^3\,x}{2}+\frac {18\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3-10\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(c + d*x)^2*(a + a/cos(c + d*x))^3,x)

[Out]

(5*a^3*atanh(tan(c/2 + (d*x)/2)))/d - (5*a^3*x)/2 + (18*a^3*tan(c/2 + (d*x)/2)^3 - 10*a^3*tan(c/2 + (d*x)/2)^7
)/(d*(tan(c/2 + (d*x)/2)^8 - 2*tan(c/2 + (d*x)/2)^4 + 1))

________________________________________________________________________________________